• Home
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011

PDI Studio 5

Design to make a difference

Feed on
Posts
comments

Solar Tracker

Dec 5th, 2013 by parkes2

In order for the trough reflector design to be effective and efficient, it is necessary for a solar tracking system to be integrated into the design so that the reflector can gather a maximum level of sunlight even as the sun “moves across the sky”.

There are many existing systems that accomplish this task though the use of electronic control with sensors and a feedback system. Some are even weight driven but use electronic times to control the rate of decent of a weight. This is a very effective method for tracking the sun if there is a reliable source of power. We are designing our reflector for use in Ghana and around the world where electricity is not always readily available. Solar panels are often a good alternative and using a backup battery system when the sun goes behind the clouds makes it more effective but in Ghana, things like this will be stolen and reused for something else. We have to consider appropriate technologies for Ghana.

DSCN0626          DSCN1103

These were two separate tracking system iterations built by the summer 2013 exchange group. These servo driven systems both failed to provide adequate torque to the frame and more importantly yet completely overlooked in the design, these methods didn’t move the reflector at a constant rate that is needed.

Our group and others before us have all determined that a non-electric, mechanical heliostat will have the best chances of success.

Sketch       IMG_0468     IMG_0469

 

Design process and iterations of the escapement wheal. Struggled to make a bike part work to this.

IMG_0481     IMG_0480

IMG_0483     IMG_0484

 

IMG_0476     IMG_0477

Building a semi-functional prototype as proof of concept to continue with the bike gear. The tooth geometry had to be slightly altered to prevent slipping from non-perpendicular surface force between the anchor and escapement wheel. Final design would use a different gear ratio.

r1     r3

A proposed upgrade to the current frame design enables a constant force to be applied in a confined space without a pulley system.

This assumes that the center of gravity is able to be placed along the axis of rotation.

r5                           s1

The red arrows indicate where the heliostat will be attached to the frame. The image above is a conceptual model of the mechanical heliostat.

s7     s5

s6

 

Inner structure

s3          s4

s2

 

 

 

Comments Off on Solar Tracker



Comments are closed.

  • Projects

    • 2017
      • Artistic Prosthetic
      • Cell Protobox Activity
        • Background
        • Overview and Lesson Plan
        • Pictures from the Activity
        • Final Prototypes from the Activity
        • Recount of the Activity
        • Demo Day with PDI Students
        • Final Protobox
        • Next Steps
        • Vision
      • Hue Harmony
        • Project Scope
          • HueHarmony2.ino
          • Sampler_12bit.ino
        • Future Development
        • User Feedback
        • Research
      • infinish.ed
        • Proposed Solution – Unfini-shed
        • Proposed Solution – infinish.ed
        • User Experience Mapping
        • Design Justification
        • Roadblocks/Challenges
        • User Feedback
        • Conclusion
      • Pop-Up Symphony
      • Saltwater Greenhouse
      • Smart Protection Brace
        • Background Research
        • Initial Prototype
        • Iterations and Second Prototype
        • Next Steps
        • Potential Methods
        • User Group
    • 2016
      • Creation Station: An Interactive Kiosk
        • User Group
        • Feedback #1: Oakwood Community Dinner-November 14th, 2016
        • Feedback #2: Uncle Sam’s Bus Stop-November 15th, 2016
        • Feedback #3: Farmer’s Market- November 19th, 2016
        • Prototype and Final Build of the Kiosk
        • Final Testing and Final Thoughts
      • ElektroTone
      • Furnäture
      • Media Sanctuary Mobile Experience
        • Prototype 1
        • Prototype 2
        • Prototype 3
        • Next Steps
        • Presentation Slides
      • ObservaStory
        • Background Research
        • First Iteration
        • Second Iteration
        • Evaluation & Dissemination
      • People Library
        • Target User Group
        • Primary Iteration: The Event
        • Secondary Iteration: The System
          • The Website
          • The App
        • User Feedback: The Process
        • The Final Product
      • Physics Plank
        • Physics Plank 1.0
          • Design
          • User Feedback
        • Physics Plank 2.0
          • Design
          • User Feedback
        • Next Steps
          • Ideal Code and Construction
      • Portable Foundation Finder (PFF)
        • Background Research
        • Customer Discovery
          • Personas
          • Survey Responses
        • Prototype
        • User Testing
        • Working Demo
    • 2015
      • Alien Adaptation
        • Target User Group
        • First School Visit (September 28, 2015) – Prototype #1
        • Second School Visit (October 15, 2015) – Prototype #2
        • Third School Visit (November 9, 2015) – Prototype #3
        • Fourth School Visit (December 10th, 2015) – Prototype #4
        • Background Research
        • Alien Cards
        • Methods of Organization
        • Other Resources
      • Zoe the Green Monkey
        • Background Research
        • Evaluation & Dissemination
        • Sources for Further Teaching
      • Recipe Ratios
        • School 2 Visits
        • Background Research and Information
        • Context
        • Evaluation & Assessment
      • Space Race
        • Background Research
        • Evaluation and Assessment
        • Field Work : 1st Visit to School 2
        • Field Work : 2nd Visit to School 2
        • Field Work : 3rd Visit to School 2
        • Field Work : Final Visit to School 2
      • Rhythmatic
        • Overview/Background Research
        • User Research & Design Specifications
        • Lesson Plan
        • User Testing
        • Ethnographic Observations
        • Final Interface Design
    • 2014
      • Ghanaian Solar Heat Collection
        • Solar Production of Adinkra Ink
          • Adinkra Ink Background Information
            • Interview with Mae-Ling Lokko
            • Production of Adinkra Ink
        • Solar Production of Biochar
          • Biochar Information
          • Heliostat Development
            • Codes and Hardware
            • Phase 1: Small setup
            • Phase 2: Medium Setup
            • Phase 3: Future Design Considerations
          • Interviews with Marianne Nyman and Alex Allen
          • Planning the process
          • Prototype Design Process Images
        • Prototype Iterations
        • Testing
        • Future Prospects
      • Cheap Sensors for Quality Education
        • Building the Sensor
        • CSnap Integration for Data Visualization
        • Future Work
        • Hardware
        • Previous Iterations
        • Professional Development Integration
          • Compost Computing PD Outline
        • Transferring Data from Arduino to CSnap
        • Code (Integration with SD card data collection)
          • SD Card Readout Example
        • Code (Temperature and Humidity sensors only)
      • Condom Vending Machine
        • Cultural Background
        • Why Open Source?
        • Screen Printing Vs. Stickers
          • Hints for stickers!
        • Intitial Design Ideas
          • Initial Designs
        • Prototypes and feedback
        • Final Design
        • Feedback
        • Future Plans
      • Music & Sound: Earthquake Simulator
        • Prototyping & Iterations
          • Rounds 1 & 2
          • Round 3: Final Prototype
        • Field-Testing: User Feedback
        • How-To/DIY Projects
        • Future Testing
        • Dissemination
    • 2013
      • Edu-Ponics
        • The Community Garden
        • The Tower
        • The Monitoring Unit
          • Code
          • Prototype
        • Dissemination
        • User Feedback
        • About
      • Fraction Bot
        • Future Iterations
        • Primary Market Research
        • Prototyping/Testing
        • Source Code–Please Use
      • Ghana Outreach Solar Reflector
        • Cultural Background
        • Partnership with KNUST
        • Prototyping
          • Initial Mock-up
          • Lamination
          • Plywood Model
          • Reaction Chamber
          • Stainless Steel Ribs
        • Testing
        • Future Iterations
      • iQube
      • Lean Green Clean Machine
        • Background
        • Redesign Proposal
      • Music Factory
        • Prototype
        • Field Testing
        • Dissemination
      • Nutrition Kitchen
        • The Game
        • Learning About Nutrition
        • Children’s Reactions and Results
      • Solar Tracker
    • 2012
      • 2 Fast, 2 Curious
        • Learning Objectives
        • Make It Yourself!
          • Hardware
          • The Code
        • Responses
        • The Game
        • Downloads
      • Apollo 2 1/4
        • Children’s Reactions
        • Final Trip Notes
        • Fraction Practice
        • Materials & Software Used
        • Source Code
      • Coordinate Kinection
        • The Game
          • How to Play
          • Screenshots
        • Student Reactions
        • Do It Yourself
          • main.cpp
          • Instructions
          • Download
      • Discover The Universe
      • Power Up!
        • Make Your Own
        • Platform Theory
          • Software Theory
        • Research and Development
        • Student Reaction
      • Squid Learn
        • Building the Lesson Plan
        • How It’s Made
        • Research and Iterations
          • 1st Visit
          • 2nd Visit
          • 3rd Visit
        • Student Reactions
    • 2011
      • Alien Frontier
        • Downloads
        • The Process
          • Ethnographic Description
          • Ethnographic Description 1
          • Ethnographic Description 2
      • Cookie Creations
        • Cookie Creation Game
        • Classroom Process
        • Assessments and Surveys Used
        • Research
      • Fast Track
        • DIY
        • Learning Objectives
        • Materials
        • Response
        • Components
      • Make ’em Fresh
        • Make ’em Fresh: How It’s Made
          • Team Contributions
        • Make ’em Fresh: Research and Iterations
          • Early Concepts
          • Images: First and Second Visits
          • Future Iterations
        • Make ’em Fresh: Student Response
          • Pre- and Post-Testing
      • Rap Star
        • The Game
          • What?
          • When & Where?
          • Who?
          • Why?
        • Field Testing and Iterations
          • First Visit
          • Second Visit
          • Final Visit
          • Ethnographic Descriptions
        • What Now?
          • Conclusion
          • Future Iterations
          • Additional Images
      • Rush More
      • School House of Pop
        • Educational Goals
        • Student Response
        • Design Evolution
        • Future Design Aspirations
        • Culture and Society
        • Pictures at School

Theme: MistyLook by Sadish. WPMU Theme pack by WPMU-DEV.